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Comment on ‘‘Computation of the viscosity of a liquid from time averages of stress fluctuations’’
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In a recent paper, Hess and Evans@Phys. Rev. E64, 011207~2001!# propose a method different from the
conventional Green-Kubo and Einstein methods to calculate viscosity in equilibrium molecular dynamics
simulations. For a comparison, we calculate the shear viscosity of SPC/E water at 303 K using these three
different methods. We find that the Hess-Evans method is not as good as the other two in practical application,
especially for the fluids with high viscosity and complicated relaxation.
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Recently, based upon equilibrium molecular dynam
~EMD! simulations, Hess and Evans@1# have proposed a
method to calculate shear and bulk viscosities from ensem
averages of the mean square of time averages of the s
fluctuations. The authors declare the method to be inter
diate between the conventional Green-Kubo method and
stein method. They also demonstrate the validity of th
method by the agreement of viscosity results obtained
their method with those from nonequilibrium molecular d
namics~NEMD! simulations@2#. However, Hess and Evan
@1# do not compare their method directly with the Gree
Kubo and Einstein methods that are the standard method
obtain viscosity and other transport properties in EMD sim
lations. In this paper, we compare in detail these three
ferent EMD methods, and find some limitations of the He
Evans method in practical application.

We first compare the formulas of the Einstein method a
the Hess-Evans method. Usually, according to Refs.@3–5#,
the Einstein method obtains shear viscosity by

hE5
V

2kBT

d

dt
^@DG~ t !#2& ~ t→`!, ~1!

whereV is the volume,T the temperature, andkB the Bolt-
zmann’s constant.̂@DG(t)#2& is the so-called mean squa
displacement~MSD! of G(t), similar to MSD for diffusion
coefficient, and

DG~ t !5E
0

t

dt8s~ t8!, ~2!

wheres is the off-diagonal elements of the stress tensor. T
Hess-Evans method@1# obtains shear viscosity using a fo
mula

hHE5t
V

2kBT
^s̄~ t !2& ~ t→`!, ~3!

wheres̄(t) is the time-segment~i.e., t, an interval betweent8
and t81t) average of stress fluctuations and is defined a

*Corresponding author. Email address: guogj@mail.igcas.ac.
1063-651X/2003/67~4!/043101~3!/$20.00 67 0431
s

le
ess
e-
n-
ir
y

-
to
-
f-
-

d

e

s̄~ t !5
1

t E0

t

dt8s~ t8!. ~4!

In addition, for arbitraryt, hHE(t) is defined as an effective
viscosity according to Ref.@6#, and the effective viscosity
reduces to dynamical viscosity in the limit oft@t with t
means relaxation time. Comparing Eqs.~2! and~4!, one will
get

s̄~ t !5
1

t
DG~ t !, ~5!

and so Eq.~3! changes to

hHE5
V

2kBT

1

t
^@DG~ t !#2& ~ t→`!. ~6!

Both Eq.~6! and Eq.~1! are formal expressions of Einstei
relation @3–5,7–9# and they lead to the same result in th
limit of t→`. However, Eq.~6! and Eq.~1! display different
asymptotic behaviors in practical application becau
^@DG(t)#2& increases nonlinearly at initial time~see Fig. 1
and the Fig. 1 in Ref.@4#!. The nonlinear increment of the
MSD of G(t) for viscosity resembles the initial nonlinea
increment of MSD for diffusion coefficient, which is cause
by cage effects. Because the initial part of the curve be
downward ~Fig. 1!, one can easily deduce thathHE(t) is
always smaller thanhE(t) according to Eqs.~1! and~6! and
approaches tohE(t) in the limit of t→`.

In our previous paper@10#, which calculates both shea
and bulk viscosities of water by using the Green-Ku
method, we totally carry out 20 independent runs with ea
lasting 200 ps in order to improve the precision of viscos
results. The large quantities of stress data recorded can
be used to calculate viscosities by applying the three dif
ent methods mentioned above for a comparison. Take
shear viscosity as an example, we find that the initial par
^@DG(t)#2& is indeed nonlinear~Fig. 1!, which agrees with
the results of Ref.@4#. Then, we calculate the differentiatio
of the curve in Fig. 1 to obtainhE(t) and the ratio of
^@DG(t)#2& to time to obtainhHE(t). We plot hE(t) and
hHE(t) in Fig. 2 together withhGK(t) calculated using the
Green-Kubo method@10#. Obviously,hE(t) andhGK(t) are
equivalent, and they give a consistent shear viscosity va
of 6.560.431024 Pa s at the beginning of plateau located
©2003 The American Physical Society01-1
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3.2 ps. However,hHE(t) is very different fromhE(t) and
hGK(t). It increases with time and approaches toward
plateau value of 6.531024 Pa s at much longer time range
In other words, the rate ofhHE(t) approaching to the platea
value is much slower than that ofhGK(t) andhE(t).

From a theoretical point of view, in the limit oft→`, the
Hess-Evans method can report a correct value of visco
However, for practical application, the Hess-Evans meth
shows some disadvantages. In Fig. 2, the statistic uncer
ties ofh(t) shown by the error curves increase steadily w
time because less and less stress data are available fo
calculation ofh(t) at longer time due to the always limite
lengths of EMD simulations. As for the Green-Kubo a
Einstein methods, one can obtain high precision and h
accuracy viscosity results at short time interval because
the appearance of a plateau. However, the Hess-E

FIG. 1. MSD ofG(t) ~thick solid line! for SPC/E water at 303
K. Given an arbitrary pointP on the curvehHE(tP) the slope of line
PO, is always smaller thanhE(tP), the slope of tangential linePR.
The inset shows the MSD ofG(t) up to 30 ps and the thin solid
lines in it are the MSD ofG(t) plus and minus its error 2s, re-
spectively. Note the MSD ofG(t) in the figure has been multiplied
by a factor ofV/2kBT.

FIG. 2. Shear viscosity calculated by different methods.hHE(t)
is thick solid line,hE(t) is thin solid line, andhGK(t) is thin dashed
line. Their errors 2s are also shown as functions of time on th
underside of the figure. The dotted line is the common platea
hE(t) andhGK(t), which begins from 3.2 ps@10#.
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method is not the case. If we take the values ofhHE(t) at 6
ps (@t50.065 ps according to Ref.@11#! and at 30 ps, we
will get shear viscosity of 6.060.331024 Pa s and 6.4
60.831024 Pa s, respectively~Fig. 2!. Compared with the
results of the Green-Kubo and Einstein methods, the form
value shows high precision but low accuracy while the la
shows high accuracy but low precision. If one wants to i
prove the precision of viscosity value without losing its a
curacy so that the Hess-Evans method can report a valu
good as the other two methods, more extra EMD simulati
have to be done.

Additionally, we notice that the statistics of the viscosi
calculations of Ref.@1# is poor. Hess and Evans@1# carry out
only one simulation with 240 000dt, while we carry out 20
independent runs with each run lasting 2 000 000dt. The au-
thors calculate and average shear viscosity from three s
components, while we collect five independent stress co
ponents@10#. Moreover, the number of blocks which the
evaluate to obtain ensemble average of^s̄(t)2& is too small.
For instance, when the authors calculate^s̄(t)2& at t/t re f
520.0 based on 1920 stress data with time intervals
0.5t re f , they evaluate only 48@51920/(20/0.5)# blocks with
different initial time t0. In fact, to improve statistics, we
believe that 1880 (51920220/0.5) blocks with differentt0
should have been evaluated. We check these two diffe
statistical procedures using the same stress data of ours
results~Fig. 3! show clearly that ourhHE(t) increases with
time smoothly, while the authors’hHE(t) increases with time
accompanying larger and larger fluctuations.

Now, it is necessary to compare the simulation syste
studied by the authors and by us. The authors study a fl
~well above critical point! with low viscosity and simple re-
laxation, while we study a fluid~well below critical point!
with high viscosity and complicated relaxation. In detail, t
stress autocorrelation function of the authors’ system is s
ply an exponential function@6#, while that of our system is
described by two complicated nonexponential functions@11#.
Because of the difference in relaxations between these
simulated systems, to calculate viscosity using Hess-Ev
method may be good enough in the authors’ system des

of

FIG. 3. Fluctuations ofhHE(t) calculated by different statistica
procedures. The dots are calculated according to the authors’
cedure. The solid line, which is the same as the thick solid line
Fig. 2, is calculated according to our procedure~also see text!.
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the poor statistics of̂s̄(t)2& but it is not good enough in ou
system when compared with the results obtained by us
Green-Kubo and Einstein methods.

In conclusion, the Hess-Evans method is correct to ca
late viscosity theoretically but it shows some disadvanta
in practical applications. Because the rate ofhHE(t) ap-
proaching to the asymptotic value of viscosity is slower th
that of hGK(t) and hE(t), while the errors of theseh(t)
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increase with time, the viscosity reported by Hess-Eva
method is less precise than those by Green-Kubo and
stein methods, especially for the fluids with high viscos
and complicated relaxation.
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