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Comment on “Computation of the viscosity of a liquid from time averages of stress fluctuations”
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In a recent paper, Hess and EvdRéiys. Rev. B64, 011207(2001] propose a method different from the
conventional Green-Kubo and Einstein methods to calculate viscosity in equilibrium molecular dynamics
simulations. For a comparison, we calculate the shear viscosity of SPC/E water at 303 K using these three
different methods. We find that the Hess-Evans method is not as good as the other two in practical application,
especially for the fluids with high viscosity and complicated relaxation.
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Recently, based upon equilibrium molecular dynamics _ 1t
(EMD) simulations, Hess and Evar4] have proposed a U(UZYJ dt'o(t’). (4)
method to calculate shear and bulk viscosities from ensemble 0
averages of the mean square of time averages of the stregsaqition, for arbitrant, 7,e(t) is defined as an effective
fluctuations. The authors declare the method to be '”terme\iiscosity according to Refl6], and the effective viscosity
diate between the conventional Green-Kubo method and Eingqces to dynamical viscosity in the limit 6% 7 with 7
stein method. They also demonstrate the validity of their,.ans relaxation time. Comparing E€®). and (4), one will
method by the agreement of viscosity results obtained by,
their method with those from nonequilibrium molecular dy-
namics(NEMD) simulations[2]. However, Hess and Evans _ 1
[1] do not compare their method directly with the Green- o(t)=TAG(), %)
Kubo and Einstein methods that are the standard methods to
obtain viscosity and other transport properties in EMD simu-and so Eq(3) changes to
lations. In this paper, we compare in detail these three dif-
ferent EMD methods, and find some limitations of the Hess- vV 1
Evans method in practical application. THE ™ okaT ?<
We first compare the formulas of the Einstein method and
the Hess-Evans method. Usually, according to Rgs.5), Both Eq.(6) and Eq.(1) are formal expressions of Einstein

[AG(D]?) (t—o). (6)

the Einstein method obtains shear viscosity by relation [3-5,7—9 and they lead to the same result in the
limit of t—o0. However, Eq(6) and Eq.(1) display different

vV d 5 asymptotic behaviors in practical application because
TE= Sk GiAGMI) (t=ee), (D) ([AG(t)]?) increases nonlinearly at initial timeee Fig. 1

and the Fig. 1 in Ref[4]). The nonlinear increment of the
MSD of G(t) for viscosity resembles the initial nonlinear
increment of MSD for diffusion coefficient, which is caused
by cage effects. Because the initial part of the curve bends
downward (Fig. 1), one can easily deduce thaig(t) is
always smaller thame(t) according to Egs(1) and(6) and
. approaches toye(t) in the limit of t—oo.
AG(t)=f dt’ o(t'), 2) In our previous papef10], which ca_lculates both shear

0 and bulk viscosities of water by using the Green-Kubo

method, we totally carry out 20 independent runs with each

whereo is the off-diagonal elements of the stress tensor. Théasting 200 ps in order to improve the precision of viscosity

Hess-Evans methofd] obtains shear viscosity using a for- results. The large quantities of stress data recorded can thus
mula be used to calculate viscosities by applying the three differ-

ent methods mentioned above for a comparison. Take the
v shear viscosity as an example, we find that the initial part of
nHE=tm<a(t)2> (t—»), (3 {([AG(t)]?) is indeed nonlineaFig. 1), which agrees with
B the results of Refl4]. Then, we calculate the differentiation
. of the curve in Fig. 1 to obtainye(t) and the ratio of
whereo(t) is the time-segmerit.e.,t, an interval betweet! ([AG(t)]?) to time to obtainyyg(t). We plot 5g(t) and
andt’ +t) average of stress fluctuations and is defined as #yg(t) in Fig. 2 together withngk(t) calculated using the
Green-Kubo metho@10]. Obviously, 7g(t) and gk(t) are
equivalent, and they give a consistent shear viscosity value
* Corresponding author. Email address: guogj@mail.igcas.ac.cn of 6.5+0.4xX 10”4 Pa's at the beginning of plateau located at

whereV is the volume,T the temperature, ankl the Bolt-
zmann’s constan{[AG(t)]?) is the so-called mean square
displacementMSD) of G(t), similar to MSD for diffusion
coefficient, and

1063-651X/2003/6(#)/0431013)/$20.00 67 043101-1 ©2003 The American Physical Society



COMMENTS

=

“w
T

MSD of G{) 16"° Pa s

2 o= ow N
S D D G

0 5 10 15 20 25 30

PHYSICAL REVIEW E 67, 043101 (2003

Time (ps)

[ 5]
e

MSD of G(f) (10™° Pas?)
Shear viscosity (104 Pas)
S = N [T TN N N = -]

-
T
\
\
\
\

5 10 15 20 25 30
Time (ps)

Time (ps)

FIG. 3. Fluctuations ofy,(t) calculated by different statistical
procedures. The dots are calculated according to the authors’ pro-
cedure. The solid line, which is the same as the thick solid line in
Fig. 2, is calculated according to our proced(aso see text

FIG. 1. MSD ofG(t) (thick solid line for SPC/E water at 303
K. Given an arbitrary poinP on the curvepye(tp) the slope of line
PO, is always smaller thawg(tp), the slope of tangential linER.
The inset shows the MSD d&(t) up to 30 ps and the thin solid
lines in it are the MSD ofG(t) plus and minus its error @, re-
spectively. Note the MSD oB(t) in the figure has been multiplied
by a factor ofV/2kgT.

method is not the case. If we take the valuesypg(t) at 6

ps (>7=0.065 ps according to Ref11]) and at 30 ps, we
will get shear viscosity of 680.3x10 % Pas and 6.4
3.2 ps. Howeverge(t) is very different fromzng(t) and  +=0.8x10 * Pas, respectivelyFig. 2). Compared with the
nek(t). It increases with time and approaches toward theesults of the Green-Kubo and Einstein methods, the former
plateau value of 6810 * Pas at much longer time ranges. value shows high precision but low accuracy while the later
In other words, the rate ofi,c(t) approaching to the plateau Shows high accuracy but low precision. If one wants to im-

value is much slower than that afs«(t) and 7g(t). prove the precision of viscosity value without losing its ac-
From a theoretical point of view, in the limit af-o, the ~ CUracy so that the Hess-Evans method can report a value as

Hess-Evans method can report a correct value of viscositEgOOd as the other two methods, more extra EMD simulations

. N to be done.
However, for practical application, the Hess-Evans metho ave to. . - . .
shows some disadvantages. In Fig. 2, the statistic uncertain- Additionally, we notice that the statistics of the viscosity
. ’ t .~ . calculations of Ref{1] is poor. Hess and Evaig] carry out
ties of »(t) shown by the error curves increase steadily with

time b I dql ¢ dat ilable for t nly one simulation with 240 00R, while we carry out 20
Ime because less and 1ess siress data are avarable Tor ec‘iependent runs with each run lasting 2 000800 he au-
calculation of5(t) at longer time due to the always limited

- 4 thors calculate and average shear viscosity from three stress
lengths of EMD simulations. As for the Green-Kubo and ;omponents, while we collect five independent stress com-
Einstein methods, one can obtain high precision and h'gBonents[lo]. Moreover, the number of blocks which they

accuracy viscosity results at short time interval because o valuate to obtain ensemble average{&t)z) is t00 small.

the appearance of a plateau. However, the Hess-Evans .
PP P For instance, when the authors calculdte(t)?) at t/t,

=20.0 based on 1920 stress data with time intervals of
0.5, they evaluate only 4B=1920/(20/0.5) blocks with
different initial time ty. In fact, to improve statistics, we
believe that 1880+ 1920-20/0.5) blocks with different,
should have been evaluated. We check these two different
statistical procedures using the same stress data of ours. The
results(Fig. 3) show clearly that oumye(t) increases with
time smoothly, while the authorsj,g(t) increases with time
accompanying larger and larger fluctuations.

Now, it is necessary to compare the simulation systems
studied by the authors and by us. The authors study a fluid
(well above critical pointwith low viscosity and simple re-
laxation, while we study a fluidwell below critical poini
with high viscosity and complicated relaxation. In detail, the
stress autocorrelation function of the authors’ system is sim-

FIG. 2. Shear viscosity calculated by different methagise(t) ~ Ply @n exponential functiof6], while that of our system is
is thick solid line,7e(t) is thin solid line, andpg(t) is thin dashed ~ described by two complicated nonexponential functidrig.
line. Their errors 2r are also shown as functions of time on the Because of the difference in relaxations between these two
underside of the figure. The dotted line is the common plateau osimulated systems, to calculate viscosity using Hess-Evans
7e(t) and ngk(t), which begins from 3.2 pELO]. method may be good enough in the authors’ system despite
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the poor statistics ofc(t)2) but it is not good enough in our increase with time, the viscosity reported by Hess-Evans

system when compared with the results obtained by usingethod is less precise than those by Green-Kubo and Ein-

Green-Kubo and Einstein methods. stein methods, especially for the fluids with high viscosity
In conclusion, the Hess-Evans method is correct to calcuand complicated relaxation.

late viscosity theoretically but it shows some disadvantages

in practical applications. Because the rate g@fc(t) ap- We thank Dr. Zhihui Du for his help during this work.
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